New Views on Extrasolar Planetary Systems from *Kepler*

Dan Fabrycky UC Santa Cruz

Jack Lissauer, Josh Carter, Matthew Holman, Darin Ragozzine Jason Rowe, Bill Cochran, Laurance Doyle, and the *Kepler* team

Outline

- Exoplanetary Systems overview
- Kepler's haul
- Individual Systems:
 - KOI-730, Kepler-11, -18, and -16

Radial Velocity Multiple Planets

Low-mass planets: a different population?

Resonances

55 Cnc b-c

Name	Msin(i) mjupiter ±	Orbital Period days ±	Orbital Eccentricity ±
55 Cnc c	0.168	44.379	0.05
55 Cnc b	0.83	14.6513	0.016

Novak, Lai, Lin 2003 see also: Terquem & Papaloizou 2008

Kepler Mission

- NASA, photometry of 150,000 stars
- Looking for Earth-like planets in transit
- ~40 ppm in 6 hours; 30 minute cadence
- 210 days are public!

Kepler finds Multiplanets

(Steffen et al. 2010) Transit search and figures by Jason Rowe

Numbers of multiplanets:

115 doubles, 45 triples, 8 quaduples,

1 quintuple and 1 sextuple

Borucki et al. 2011 Latham, Rowe, Quinn et al. 2011 Lissauer, Ragozzine, Fabrycky et al. 2011

Kepler systems

· • •	
• • •	KOI-899
• • •	KOI-117
	KOI-223
	KOI-658
	KOI-543
	KOI-733
	KOI-510
	KOI-1163
	KOI-952
	KOI-663
	KOI-534
	KOI-800
	KOI-248
	KOI-756
	KOI-676
	K0I-220
	K0I-880
	KOI-941
	KOI-1590
	KOI-904
	K0I-85
	KOI-597
	KOI-834
	KOI-573
	KOI-343
	KOI-339
	KOI-1306
	KOI-442
	KOI-398
	KOI-665
	KOI-1475
	KOI-377
	KOI-481
	KOI-938
•	KOI-500
• • • • •	KOI-936
· ————————————————————————————————————	K(II — 4. II)

Kepler Orrery

 http://www.youtube.com/watch? v=qRJ30fkyiU4

Resonance Preference

Resonance Preference

Lissauer, Fabrycky, Ford et al. 2011

Kepler-11 parameters

Planet	Period	Radius	Mass	Density
	(days)	(R _⊕)	(M⊕)	(g/cm³)
	10.30375	1.97	4.3	3.1
b	± 0.00016	± 0.19	+2.2,-2.0	+2.1,-1.5
	13.02502	3.15	13.5	2.3
C	± 0.00008	± 0.30	+4.8,-6.1	+1.3,-1.1
1631	22.68719	3.43	6.1	0.9
d	± 0.00021	± 0.32	+3.1,-1.7	+0.5,-0.3
71.11	31.99590	4.52	8.4	0.5
e	± 0.00028	± 0.43	+2.5,-1.9	+0.2,-0.2
	46.68876	2.61	2.3	0.7
f	± 0.00074	± 0.25	+2.2,-1.2	+0.7,-0.4
	118,37774	3.66		
g	± 0.00112	± 0.35	< 300	

Image: NASA/Pyle

Kepler-18

Kepler-18b, c, and d: A SYSTEM OF THREE PLANETS CONFIRMED BY TRANSIT TIMING VARIATIONS, LIGHTCURVE VALIDATION, Warm-Spitzer PHOTOMETRY AND RADIAL VELOCITY MEASUREMENTS

William D. Cochran¹, Daniel C. Fabrycky², Guillermo Torres³, François Fressin³, Jean-Michel Désert³, Darin Ragozzine³, Dimitar Sasselov³, Jonathan J. Fortney², Jason F. Rowe⁴, Erik J. Brugamyer⁵, Stephen T. Bryson⁴, Joshua A. Carter³, David R. Ciardi⁶, Steve B. Howell⁴, Jason H. Steffen⁷, William. J. Borucki⁴, David G. Koch⁴, Joshua N. Winn⁸, William F. Welsh⁹, Kamal Uddin^{10,4}, Peter Tenenbaum^{15,4}, M. Still^{11,4}, Sara Seager⁸, Samuel N. Quinn³, F. Mullally^{15,4}, Neil Miller², Geoffrey W. Marcy¹², Phillip J. MacQueen¹, Philip Lucas¹³, Jack J. Lissauer⁴, David W. Latham³, Heather Knutson¹², K. Kinemuchi^{11,4}, John A. Johnson¹⁴, Jon M. Jenkins^{15,4}, Howard Isaacson¹², Andrew Howard¹², Elliott Horch¹⁶, Matthew J. Holman³, Christopher E. Henze⁴, Michael R. Haas⁴, Ronald L. Gilliland¹⁷, Thomas N. Gautier III¹⁸, Eric B. Ford¹⁹, Debra A. Fischer²⁰, Mark Everett²¹, Michael Endl¹, Brice-Oliver Demory⁸, Drake Deming²², David Charbonneau³, Douglas Caldwell^{15,4}, Lars Buchhave^{23,24}, Timothy M. Brown²⁵, and Natalie Batalha²⁶

ApJS in press

Planet	Period (days)	Mass (M _{Earth})
b	3.5	12 ± 5
С	7.6	15 ± 5
d	14.9	28 ± 7

P/P=1.944 ~= 2/1

"Great Inequality" frequency: $f_{GE}=2/P-1/P$ $= 0.0037 d^{-1}$ or 270 days

The Great Inequality is observed!

Kepler-18 tests TTV masses

Planet	Period (days)	RV Mass (M _{Earth})	TTV Mass (M _{Earth})
b	3.5	12 ± 5	18 ± 9
С	7.6	15 ± 5	17.3 ± 1.7
d	14.9	28 ± 7	15.8 ± 1.3

Planets in Binaries

~50 systems known, via Doppler plus imaging follow-up

But can we find planets orbiting both stars?

Kepler-16(AB)b

- http://www.youtube.com/watch? v=0MfRo0eC1ks
- http://www.youtube.com/watch?
 v=AaE0KK7m3VA

credit: Tim Pyle (NASA)

Kepler-16: A Transiting Circumbinary Planet

Laurance R. Doyle, ^{1*} Joshua A. Carter, ² Daniel C. Fabrycky, ³ Robert W. Slawson, ¹
Steve B. Howell, ⁴ Joshua N. Winn, ⁵ Jerome A. Orosz, ⁶ Andrej Pr sa, ⁷ William F. Welsh, ⁶
Samuel N. Quinn, ⁸ David Latham, ⁸ Guillermo Torres, ⁸ Lars A. Buchhave, ^{9,19} Geoffrey W. Marcy, ¹¹
Jonathan J. Fortney, ¹² Avi Shporer, ^{13,14} Eric B. Ford, ¹⁵ Jack J. Lissauer, ⁴ Darin Ragozzine, ²
Michael Rucker, ¹⁶ Natalie Batalha, ¹⁶ Jon M. Jenkins, ¹ William J. Borucki, ⁴ David Koch, ⁴
Christopher K. Middour, ¹⁷ Jennifer R. Hall, ¹⁷ Sean McCauliff, ¹⁷ Michael N. Fanelli, ¹⁸
Elisa V. Quintana, ¹ Matthew J. Holman, ⁸ Douglas A. Caldwell, ¹ Martin Still, ¹⁸ Robert P. Stefanik, ⁸
Warren R. Brown, ⁸ Gilbert A. Esquerdo, ⁸ Sumin Tang, ⁸ Gabor Furesz, ^{8,10} John C. Geary, ⁸
Perry Berlind, ²⁰ Michael L. Calkins, ²⁰ Donald R. Short, ²¹ Jason H. Steffen, ²² Dimitar Sasselov, ⁸
Edward W. Dunham, ²³ William D. Cochran, ²⁴ Alan Boss, ²⁵ Michael R. Haas, ⁴
Derek Buzasi, ²⁶ Debra Fischer ²⁷

The mass of b?

Eclipse Timing Variations

~1 minute scale \rightarrow ~1 M_{Saturn} / M_{Sun}

Accurate Masses and Radii

111	Parameter	Value and Uncertainty
	Star A	
0.50%	Mass, M_A (M_{\odot})	$0.6897^{+0.0035}_{-0.0034}$
0.20%	Radius, $R_A(R_{\odot})$	$0.6489^{+0.0013}_{-0.0013}$
	Mean Density, ρ_A (g cm ⁻³)	3.563+0.017
A C	Surface Gravity, $\log g_A$ (cgs)	$4.6527^{+0.0017}_{-0.0016}$
Y 4.1	Effective Temperature, T_{cff} (K)	4450 ± 150
- 1	Metallicity, [m/H]	-0.3 ± 0.2
	Star B	
0.33%	Mass, M_B (M_{\odot})	$0.20255^{+0.00066}_{-0.00065}$
0.26%	Radius, $R_B(R_{\odot})$	$0.22623^{+0.00059}_{-0.00053}$
-	Mean Density, ρ_B (g cm ⁻³)	24.69+0.13
	Surface Gravity, log g _B (cgs)	$5.0358^{+0.0014}_{-0.0017}$
	Planet b	
4.8%	Mass, M_b (M_{Jupiter})	$0.333^{+0.016}_{-0.016}$
	Radius, R_b (R_{Jupiter})	$0.7538^{+0.0026}_{-0.0023}$
	Mean Density, ρ_b (g cm ⁻²)	$0.964^{+0.047}_{-0.046}$
	Surface Gravity, gh (m s ⁻²)	$14.52^{+0.70}_{-0.69}$

and that's not all...

Winn et al. Spin-orbit measurement: λ=1.6°±2.4°

New Views of Exoplanets from Kepler

Precision period ratios of transiting planets

Information on migration at an early epoch

Timing Variations of transiting planets

- Nails down the properties of multiply-eclipsing systems
- The best hope for confirming habitable planets

Planets around binaries

First solid detection: a transiting example

KOI-126: A Triply Eclipsing Hierarchical Triple with Two Low-Mass Stars

Carter, Fabrycky, Ragozzine et al. 2011, Science

 $P_1 = 1.77 \text{ d}, P_2 = 33.9 \text{ d}$ $i_{\text{mutual}} = 9.2^{\circ}, \text{ oscillating by } 0.4^{\circ}$